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General introduction 

OSTEOINDUCTION BY DEMINERALIZED BONE 

Intramuscular implantation of fresh autogenous bone (Levander 
1938, Chalmers 1959), HCl demineralized allogeneic bone (Urist 
1965, Reddi and Huggins 1972) or purified osteoinductors (Urist et 
al. 1979) regularly evoke heterotopic osteogenesis in rodents. 
When heterotopic osteogenesis results from implantation of demin-
eralized bone (DBM) or purified osteoinductors, void of living 
cells, the process is called osteoinduction. 
 The major phases of DBM-induced heterotopic osteogenesis 
in rodents are chemotaxis of mesenchymal cells, mitosis, differen-
tiation of cartilage, vascular invasion, bone differentiation and 
formation of an ossicle filled with bone marrow elements. Shortly 
after implantation of DBM there is a blood clot, platelet release and 
polymorphonuclear leukocytes arrive by chemotaxis. On day 1, 
osteoprogenitor cells are seen. By day 3, most leukocytes have 
disappeared and the osteoprogenitor cells are proliferating. On day 
5, the proliferating cells differentiate into chondroblasts. By day 7 
to 8, there are many chondrocytes producing type II collagen and 
cartilage specific proteoglycans. Then, there is a capillary invasion 
leading to hypertrophy of chondrocytes and calcification of 
cartilage matrix on day 9. On day 10, osteoblasts appear close to 
the vascular endothelium and new bone is formed by appositional 
growth on the surface of the calcified matrix and the DBM. 
Remodeling of the bone by osteoclasts starts by day 12 and an 
ossicle forms by day 16 to 21 (Urist 1965, Reddi and Huggins 
1972). 
 DBM-induced heterotopic osteogenesis in rodents has been 
used as an experimental model for investigation of the osteoinduc-
tion itself (Urist 1965) as well as the effect of several factors on the 
osteoinduction: (1) age (Syftestad and Urist 1979, Reddi 1985) and 
species (Schwartz et al. 1989) of donor and recipient; (2) properties 
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of the demineralized bone, e.g., demineralization procedure 
(Delloye et al. 1985, Marinak et al. 1989), particle size (Syftestad 
and Urist 1979), storage, and sterilization procedures (Munting et 
al. 1988); (3) dietary factors, e.g., magnesium, (Belanger et al. 
1975, Schwartz and Reddi 1979), manganese and copper (Strause 
et al. 1987), fluoride (Turner et al. 1989), vitamin A (DeSimone 
and Reddi 1983) and vitamin D (Vandersteenhoven 1988); (4) 
hormones (Reddi and Sullivan 1980, Burnett and Reddi 1983, 
Kapur and Reddi 1989); (5) growth factors (Howes et al. 1988, 
Aspenberg and Lohmander 1989); (6) biphosphonates (Bauer et al. 
1986); (7) indomethacin (Törnkvist et al. 1985); and (8) biomateri-
als (Vandersteenhoven and Spector 1983, Uretzky et al. 1987, 
Schwarz et al. 1989, Ripamonti et al. 1989). 
 Experimentally in animals, DBM enhances (1) cranio-maxil-
lofacial reconstructions (Senn 1889, Ray 1957, Mulliken and 
Glowacki 1980, Glowacki et al. 1981a, Kaban and Glowacki 1981, 
Pinholt et al. 1990), (2) healing of diaphyseal defects (Narang et al. 
1979, Oikarinen and Korhonen 1979, Gupta and Tuli 1982, 
Einhorn et al. 1984, Aspenberg et al. 1986, Aspenberg et al. 1987, 
Gepstein et al. 1987, Köhler and Kreicbergs 1987, Hopp et al. 
1989) and (3) spinal fusion (Lindholm et al. 1982, Ragni et al. 
1987). 
 DBM have been used clinically for (1) cranio-maxillofacial 
reconstructions (Kümmell 1891, Glowacki et al. 1981b, Ousterhout 
1985), (2) healing of diaphyseal defects (Senn 1889, Miller 1890, 
Urist 1968, Osepian et al. 1989), (3) pseudarthrosis operation (Urist 
1968), (4) arthrodesis of hip (Urist 1968) and (5) spinal fusion 
(Sharrard and Collins 1961, Urist 1968, Urist and Dawson 1981) 
 Whereas it has been clearly documented that DBM induces 
heterotopic bone formation in rodents and enhances bone formation 
in skeletal sites both in rodents and humans, the results regarding 
heterotopic bone formation by DBM in primates are conflicting. 
Aspenberg et al. (1988) found no bone and very little cartilage 40 
days postoperatively in squirrel monkeys and concluded that the 
observed bone formation by DBM implantation in skeletal sites in 
humans is not necessarily caused by osteoinduction, but may be the 
result of the implant acting as a osteoconductive scaffold. Further, 
Aspenberg and Andolf (1989) found that human DBM implanted 
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intramuscularly in athymic rats induced bone formation and they 
concluded that the possible decreased ability of such DBM to 
induce heterotopic bone formation in adult primates may be due to 
an inability by the recipients to respond to the inductive stimuli of 
the DBM (Aspenberg and Andolf 1989). However, Hosny and 
Sharawy (1985) found that intramuscularly implanted DBM in 
rhesus monkeys induced cartilage and bone although the process 
was delayed compared to that in rodents, and Ripamonti reported 
bone formation in 73 out of 96 DBM implants in 24 adult male ba-
boons (1991). 

PURIFIED OSTEOINDUCTORS AND GROWTH FACTORS 

The existence of osteoinductor(s) and growth factors in trans-
planted bone and bone extracts has been postulated for a long time 
(Gallie and Robertson 1929, Levander 1938, Lacroix 1945, Urist 
1965). In recent years several osteoinductors and growth factors 
have been isolated and characterized from bone matrix extracts: (1) 
bone morphogenetic protein (BMP) (Urist and Mikulski 1979); (2) 
osteogenin (identical to BMP-3) (Sampath et al. 1987); (3) insulin-
like growth factor I (IGF I, identical to somatomedin-C) (Canalis et 
al. 1988) and insulin-like growth factor II (IGF II, similar to SGF) 
(Farley and Baylink 1982); (4) transforming growth factor beta 
(TGF-b, identical to cartilage inducing factor, CIF) (Seyedin et al. 
1985, Linkhart et al. 1986); (5) acidic and basic forms of fibroblast 
growth factor (FGF) (Hauschka et al. 1986); and (6) platelet-de-
rived growth factor (PDGF) (Hauschka et al. 1986). 
 In the past few years, many osteoinductors and bone growth 
factors, including subgroups of the factors mentioned above, e.g., 
BMP 1-7, have become readily available by recombinant DNA 
technology and knowledge about their biologic effects is evolving 
(Hauschka et al. 1988, Gospodarowicz 1990, Marden et al. 1990, 
Ozkaynak et al. 1990, Pfeilschifter et al. 1990, Wozney et al. 1988, 
Wang et al. 1990, Mohan and Baylink 1991, Reddi and 
Cunningham 1991). The osteoinductors are necessary to initiate os-
teogenesis, whereas growth factors may augment different stages of 
the process, e.g., attracting preosteoblasts, accelerating their 
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proliferation, and stimulating angiogenesis (Kawamura and Urist 
1988, Reddi et al. 1989, Marden et al. 1990). 

ORTHOPEDIC ABSORBABLE IMPLANTS 

Orthopedic absorbable implants have been developed for different 
purposes: (1) temporary internal fixation of skeletal parts (Getter et 
al. 1972, Rokkanen et al. 1985); (2) bone substitutes, i.e., polymers 
and ceramics, used alone or in combination with bone grafts 
(Driskell et al. 1972, Hollinger 1983, Higashi et al. 1986, Hollinger 
and Battistone 1986); (3) bone cement (Gerhart et al. 1989); (4) os-
teoinductor delivery (Urist et al. 1984, Lovell et al. 1989, Lucas et 
al. 1990); (5) drug delivery, (Mackey et al. 1982, Tasslet and Inhoff 
1988); and (6) local hemostasis (Geary and Frantz 1950, Harris and 
Capperauld 1980). Implants used for the latter three purposes are 
discussed below. 

OSTEOINDUCTOR DELIVERY SYSTEMS 

Demineralized bone matrix (DBM) used as chips or powder is 
technically difficult to apply for reconstructions and bridging of 
bone defects as the particles may displace during or after the opera-
tion. Incorporating the DBM in a bioerodible carrier thus seems 
warranted (Glowacki and Mulliken 1985). Further, it has been 
claimed that effective osteoinductive stimulus in humans require 
supply of a proper combination of an osteoinductor, i.e., BMP-2 or 
osteogenin (BMP-3) to induce bone formation and growth factors 
to augment the process (Kawamura and Urist 1988). A biodegrad-
able delivery system is needed for sustained release of such factors 
(Takagi and Urist 1982, Sato and Urist 1985, Marden et al. 1990). 
 The ideal delivery system should fulfill several criteria; it 
should (1) be biocompatible (Lyman and Searce 1974); (2) have the 
right physical properties (Yamazaki et al. 1988); (3) provide local 
hemostasis (Sudmann et al. 1990); (4) provide sustained, controlled 
release of the active substance (Heller et al. 1981, Rosen et al. 
1983, Urist et al. 1984); (5) be resorbed and replaced by preosseous 
tissues within two weeks, cartilage within three weeks and bone 
within four to six weeks (Urist et al. 1987); and (6) not inhibit 
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osteogenesis in any way, neither the different stages of os-
teoinduction nor osteoconduction. 
 Several materials have been investigated as biodegradable 
vehicles such as β-tricalcium phosphate (Urist et al. 1984, Urist et 
al. 1987), collagen (Nathan et al. 1988, Takaoka et al. 1988, 
Nakahara et al. 1989), fibrin sealant (Schwarz et al. 1989), matrix 
gamma-carboxyglutamic acid rich protein (Sato and Urist 1985), 
plaster of paris (Yamazaki et al. 1988), polylactic acid (Lovell et al. 
1989), copolymer of polylactide-polyglycolide (Schmitz and 
Hollinger 1988) and polyanhydride (Lucas et al. 1990). 

DRUG DELIVERY SYSTEMS 

Conventionally, bioactive agents are delivered by periodic inges-
tion or injection. During this process drug levels reach a maximum 
and then fall to a minimum. If drug concentrations fall above or be-
low the toxic level or minimum effective level, respectively, 
alternating periods of toxicity or inefficacy can result. The main 
goal of a controlled release system is to maintain the drug concen-
tration between these two levels from a single dosage form (Langer 
1986). Further, implanted drug delivery systems make possible 
local application of the drug in the effector tissue or organ. This 
principle may be especially useful in orthopedic surgery where 
such systems may be applied during bone transplantation, internal 
fixation and prosthesis surgery, e.g., to stimulate or inhibit new 
bone formation, provide infection prophylaxis or deliver other 
drugs with high local concentration without systemic effects. 
 In a controlled release system, a bioactive agent is incorpo-
rated into a carrier, generally a polymeric material. The rate of 
release of the substance is determined by the properties of the poly-
mer itself and is only weakly dependent on environmental factors. 
Controlled release systems can deliver substances slowly and con-
tinuously for long periods. Polymers release drugs by four general 
mechanisms: diffusion, chemical control, solvent activation and 
magnetism. 
 The most commonly used biodegradable polymers for drug 
delivery systems are polylactic acid (Chang 1976), polyglycolic 
acid and their copolymers (Langer 1986). Other biodegradable 
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polymers that have been used for controlled drug delivery systems 
include polymers based on caprolactone (Pitt et al. 1979), various 
copolymers of amino acids (Sidman et al. 1980), polyanhydrides 
(Rosen et al. 1983) and polyorthoesters (Heller et al. 1981). 
 Drug release from bioerodible matrix devices can be con-
trolled by either diffusion or erosion. If erosion of the matrix is 
much slower than diffusion, the release kinetics are essentially 
those of a diffusion controlled matrix. If however the drug is 
immobilized in the matrix so that diffusional release is minimal 
compared to erosion, the rate of drug release will be erosion 
controlled (Heller 1986). 
 Heterogeneous erosion occurs when degradation takes place 
only at the surface of the polymer, whereas homogeneous erosion 
is the result of degradation occurring through the polymer matrix. 
Heterogeneous erosion can lead to zero-order drug release provid-
ing diffusional release of the drug is minimal and the overall 
surface area of the device remains constant (Heller 1986). 
Hydrophobic polymers are more likely to erode heterogeneously 
since water is excluded. Hydrophilic polymers such as polylactic 
acid and polyglycolic acid, in contrast, may absorb water and erode 
homogeneously leading to progressive looseing of the matrix, 
changes in permeability and drug diffusion resulting in nonlinear 
drug release (Heller et al. 1981, Rosen et al. 1983). Polymers 
known to display hydrolytically controlled surface erosion and 
where the polymers break down to monomers are polyorthoesters 
when certain additives are included (Heller et al. 1981) and 
polyanhydrides (Rosen 1983). 

BIOERODIBLE POLYORTHOESTER 

Poly(2,2-dioxy-cis,trans-1,4-cyclohexane dimethylene tetrahydro-
furan) (Alzamer®, Alza Corporation, Palo Alto), a bioerodible 
polyorthoester, results from condensation of 2,2-diethoxytetrahy-
drofuran and cis,trans-1,4-bis(hydroxymethyl)cyclohexane. The 
biodegradation of the polyorthoester takes place by hydrolysis to 
the ultimate products 4-hydroxybutyrate (4HB) and cis,trans-1,4-
bis(hydroxymethyl)cyclohexane (CHDM). 4HB is further metabo-
lized in the tricarboxylic acid cycle, with CO2 and H2O as the end 
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products. CHDM is excreted in urine (Sendelbeck and Girdis 
1985). The polyorthoester has been developed to be used as the ve-
hicle in a sustained drug release system and the drug added is re-
leased at a constant rate (Capozza et al. 1978, Benagiano et al. 
1979). The polymer can be formulated with different physical 
properties. Polyorthoester of the formulation used in this work is 
soft and moldable. The polyorthoester adheres to bone surfaces and 
probably provides local hemostasis by plugging of spongy bone 
and secondarily promoting concentration of platelets and coagu-
lation factors (Sudmann et al. 1990, Solheim et al. 1991). 

INHIBITION OF BONE FORMATION 

Systemic administration of the nonsteroidal anti-inflammatory 
drugs (NSAIDs), indomethacin, acetyl salisylic acid or ibuprofen, 
has been shown experimentally in animals and clinically to inhibit 
both heterotopic and orthotopic osteogenesis (Dahl 1974, Sudmann 
1975, Rø et al. 1976, Sudmann et al. 1979, Sudmann and Bang 
1979, Allen et al. 1981, Törnkvist et al. 1983, Elmstedt et al. 1985, 
Solheim et al. 1986, Sodemann et al. 1988). Further, locally admin-
istered indomethacin contained in bioerodible polyorthoester gel 
has been shown to inhibit the healing of closed mid-diaphyseal fe-
mur fractures in rats (Engesæter et al. 1992). 
 Experimentally in rats, Törnkvist (1985) found that indo-
methacin in doses of 2 or 3 mg/kg inhibited DBM-induced hetero-
topic osteogenesis, whereas rats treated with 6 mg/kg all died 
within one week of perforated gastric ulcer. DiCesare (1991) found 
a dose related inhibition on DBM-induced heterotopic osteogenesis 
by indomethacin over a range between 0.04 and 4 mg/kg body 
weight. In order to inhibit DBM-induced heterotopic osteogenesis 
in rats, indomethacin had to be present before or at the time of 
implantation of DBM (Törnkvist et al. 1985, Nilsson et al. 1986). A 
short period of indomethacin treatment at the time of implantation 
of DBM is sufficient to reduce experimental bone formation, but 
the inhibitory effect slowly diminishes if the inductive process is 
continuous (Nilsson et al. 1986). 
 Inhibition of bone formation may be desirable in some clini-
cal situations: (1) heterotopic ossification following total hip 
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arthroplasty, (2) post-traumatic partial growth plate arrest, (3) cra-
niosynostosis or (4) bone coalitions. Inhibition of bone formation 
may be accomplished by administration of NSAIDs or implantation 
of interpositional materials. In arthroplasties, the NSAIDs in-
domethacin or ibuprofen has been used either prophylactically at 
the time of the arthroplasty (Dahl 1974, Almåsbakk and Røysland 
1977, Elmstedt et al. 1985, Sodemann et al. 1988) or after surgical 
removal of ectopic bone to prevent heterotopic ossification (Ritter 
and Gioe 1982, Kjærsgaard-Andersen and Schmidt 1986). Further, 
indomethacin inhibits osseous rebridging of the growth plate in 
rabbits (Sudmann et al. 1982). 
 Inhibition of osteogenesis by interpositional material has 
been accomplished clinically or experimentally in animals, by sur-
gical removal of bone and interposition of (1) free fat transplant 
(Langenskiöld 1975, Merikanto et al. 1987, Olney and Asher 
1987), (2) cartilage (Lennox et al. 1983), (3) muscle (Collins 1987), 
(4) bone wax (Friedenberg and Brashear 1956), (5) methyl 
methacrylate (Friedenberg 1957) or (6) silicone-rubber (Bright 
1974). Implantation of nonresorbable materials may, however, 
induce a chronic inflammation, predispose for infections and 
require a second operation for removal of the implant. To prevent 
systemic adverse effects including inhibition of the osteogenesis in 
other parts of the skeleton than intended, a local bioerodible 
indomethacin delivery system providing constant high local 
concentrations of the drug without systemic effects seems 
desirable. 

LOCAL HEMOSTATICS 

In bone surgery, nonabsorbable bone wax (Parker 1892, Horsley 
1892) of 88% beeswax and 12% isopropylpalmitat, is being used 
for local hemostasis (Crenshaw 1987). Bone wax may, however, 
produce a chronic inflammation with foreign-body reaction (Geary 
and Frantz 1950), retard bone healing (Howard and Kelley 1969), 
predispose for infections (Culliford et al. 1976, Robicsek et al. 
1978), impair bacterial clearance (Johnson and Fromm 1981) and 
cause wax embolization (Robicsek et al. 1981). These complica-
tions has spurred the development of absorbable local hemostatics 
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(Bergel 1909, Frantz et al. 1944, Correll and Wise 1945, Battista et 
al. 1967, Matras et al. 1972, Harris and Capperauld 1978, 
Silverstein et al. 1980, Sudmann et al. 1990), of which fibrin 
sealant (Matras et al. 1972), fibrin-collagen paste (Harris and 
Capperauld 1978) and bioerodible polyorthoester (Sudmann et al. 
1990) may be the most suitable for bone surgery as they adhere 
readily to bleeding bone. The two former materials have been used 
in clinical orthopedic practice, while the latter has been shown in 
animal models to be suitable for such use (Sudmann et al. 1990). 

AIMS OF THE PRESENT STUDY 

The present work was designed to examine a new bioerodible 
polyorthoester as a DBM-carrier, a local hemostatic and a drug-
delivery system in heterotopic and orthotopic models in rats. The 
specific objectives of the study are defined as listed. 
 
1. To examine the relation between histomorphometry and 85Sr 
uptake of DBM-induced heterotopic bone (paper I), and thus, 
establish an accurate method for evaluating heterotopic bone 
formation by 85Sr analyses. 
 
2. To study the effect of bioerodible polyorthoester on DBM-
induced heterotopic (paper II) or orthotopic (papers IV and V) 
osteogenesis. 
 
3. To compare the host tissue response and the effect on osteoin-
duction of three local hemostatics for osseous tissue, bone wax, 
fibrin-collagen paste and bioerodible polyorthoester with or 
without gentamicin (paper III). 
 
4. To study the effect of a bioerodible local indomethacin delivery 
system on DBM-induced heterotopic osteogenesis (paper VI). 
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Summary of results 

PAPER I 

A method for assessing heterotopic bone formation by 85Sr analy-
ses was established. Five, 10 or 15 mg DBM powder was implan-
ted in 45 male Wistar rats and the relationship between the results 
of histomorphometry and 85Sr uptake analysis of DBM-induced 
heterotopic bone was evaluated at 4 weeks postoperatively. Two 
indices of 85Sr uptake were calculated; the osteogenic index 
[(counts/min/mg implant)/(counts/min/mg os ilium)] and an index 
we have called the osteoquantum index in which the weight of the 
implant has been invalidated [(counts/min implant)/(counts/min/mg 
os ilium)]. The osteoquantum index was found to have a linear rela-
tionship to the area of the induced bone with a correlation coeffi-
cient of 0.90 (p<0.0001). Only weak linear relationships were 
found between the osteogenic index and the area of the new bone 
(r=0.32, p=0.03) and between the osteogenic index and the osteo-
quantum index (r=0.33, p=0.03). The osteoquantum index and the 
area of the induced bone both increased proportionally to the 
quantity of implanted DBM, whereas the osteogenic index did not 
change significantly. 

PAPER II 

Bioerodible polyorthoester was evaluated as an osteoinductor de-
livery system in 89 male Wistar rats by implantation of DBM, 
polyorthoester or a composite of the two in the abdominal muscle 
of the animals. Heterotopic bone formation and tissue reaction were 
evaluated by light microscopy in 44 rats at weeks 1, 2, 3, 4, 6 and 8 
and strontium85 uptake in 45 rats at week 4. Composite of 
polyorthoester and DBM induced cartilage and bone at the same 
rate as the DBM alone. The composite implant was technically 
easier to use than the DBM alone. Around the implants of the 
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polyorthoester and the composite, inflammation with some giant 
cells was present until week two. The polyorthoester was clearly 
seen until 3-4 weeks but later only occasional traces could be 
identified. 

PAPER III 

The tissue response and effect on DBM-induced heterotopic 
osteogenesis in the abdominal muscle of 120 male Wistar rats by 
different local hemostatics were evaluated by light microscopy and 
85Sr uptake analyses. Nonabsorbable bone wax of 88 % beeswax 
and absorbable bovine fibrin-collagen paste both significantly 
inhibited osteoinduction, whereas bioerodible polyorthoester drug 
delivery system with or without 4% gentamicin caused no signifi-
cant inhibition. Bone wax was not absorbed and induced a chronic 
foreign body reaction. Fibrin-collagen paste induced less inflam-
mation with numerous monocytes and macrophages with engulfed 
material. Bioerodible polyorthoester caused a very moderate tissue 
reaction and was mostly resorbed at week 4. 

PAPER IV 

In 36 male Wistar rats, the healing of critical size calvarial defects 
without implant or filled with DBM, polyorthoester or a composite 
of the two former was studied. Defects filled with the composite of 
polyorthoester and DBM or the DBM alone were bridged by bone 
at 4 weeks histologically and radiographically, whereas unfilled 
defects or defects filled with the polyorthoester only, did not heal. 
The polyorthoester caused a slight inflammation that subsided by 3 
weeks. Only traces of the polyorthoester could be detected at 4 
weeks. The polyorthoester provided local hemostasis when used 
either alone or in composites with DBM. The composite implant 
was moldable and easily contoured and technically easier to use 
than the DBM alone. 
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PAPER V 

The healing of large osteoperiosteal defects of 50 % of the length 
of the radius was studied in 60 male Wistar rats. The defects were 
left with no implant or filled with DBM, polyorthoester or a 
composite of the two. At 50 days the specimens were evaluated by 
light microscopy and measurement of bone formation within the 
original defect on radiographs by Sigma-Scan Measurement 
System including an electromagnetic digitizing tablet and a per-
sonal computer with Sigma scan software. Defects filled with the 
composite of polyorthoester and DBM or the DBM alone showed 
regeneration of bone corresponding to respectively 93.6 per cent 
(SD 44) and 77.6 per cent (SD 30) of the area of the defect. Defects 
with no implant or defects filled with the polyorthoester only, 
showed significantly less regeneration. The DBM used alone was 
rapidly mixed with blood forming a grainy mixture that tended to 
be displaced, whereas the composite implant was moldable, easy to 
place in the defect and the tendency for displacement was less. The 
polyorthoester provided local hemostasis when used either alone or 
in composites with demineralized bone. 

PAPER VI 

The effect of a bioerodible system for local delivery of 
indomethacin on DBM-induced heterotopic bone formation in rat 
abdominal muscle was evaluated. Two separate series were 
conducted in a total of 48 Wistar rats. In both series two types of 
implants were used: (A) control group, polyorthoester and DBM; or 
(B) experimental group, polyorthoester with 5 % indomethacin and 
DBM. In the first series, host-tissue responses and osteoinduction 
were evaluated at 2, 3 and 4 weeks histologically. In the second 
series, bone formation was quantified by 85Sr uptake at week 4. 
Blood samples were obtained under anesthesia from 3 random rats 
of each group in Series I at week 1 and of all rats of group B 
(polyorthoester with 5 % indomethacin and DBM) prior to death at 
week 2-4. Plasma was prepared and stored at -70°C until analyses. 
Indomethacin in plasma was assayed by a specific High 
Performance Liquid Chromatographic method with UV-detection 
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at 320 nanometers. The detection limit was 25 nanograms per 
milliliter. The bioerodible system for local delivery of indomet-
hacin significantly inhibited demineralized bone-induced hetero-
topic bone formation as evaluated by light microscopy and 85Sr 
uptake. The polyorthoester, with or without drug, caused little 
tissue reaction and was mostly resorbed at week 4. Indomethacin 
could not be detected in any of the blood samples. 
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General discussion 

MATERIAL AND METHODS 

Animals 
Young male Wistar rats were chosen as the experimental animals in 
this study. Rats are well standardized, easily available and their 
short life span permits experimental intervention for a significant 
fraction of their lifetime. Rats retain a basically non-Haversian 
lamellar bone structure throughout their life, however, the physio-
logical mechanisms of bone remodeling are similar to that of 
humans (Simmons 1976). Models for evaluating both heterotopic 
(Urist 1965, Elves 1974) or orthotopic (Mulliken and Glowacki 
1980, Schmitz and Hollinger 1986, Gepstein et al. 1987) osteo-
genesis have been established in rats. 
 The animals were fed standard laboratory food and water ad 
libitum. Anesthesia was induced by intramuscular injection of a 
combination of 0.075 mg fentanyl, 3.75 mg fluanisone and 1.875 
mg midazolam (Hypnorm®-Dormicum®) per kilogram of body 
weight (Flecknell and Mitchell 1984). The research protocol was 
approved by The Norwegian State Commission for the Regulation 
of Animal Experiments. The national guidelines for the care and 
use of laboratory animals were observed. 

Implants 
Demineralized bone matrix (DBM) was prepared by sterile tech-
nique from the femur, tibia and fibula of male Wistar rats of the 
same age and weight as the recipients of the corresponding series, 
except in paper IV where the donor rats were older than the 
recipients. Dissected diaphyses were crushed and the marrow was 
removed. The cortical bone was cut into chips and demineralized in 
0.2 N HCl for 48 hours at 4°C and flushed in saline (Bang 1973). 
The demineralized bone chips were suspended in liquid nitrogen 
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and lyophilized for 22 hours. Several protocols for preparing 
demineralized bone have been proposed (Urist et al. 1975, Reddi 
and Huggins 1972, Bang 1973). The more extensive processing of 
the bone in the antigen-extracted autodigested alloimplant (AAA) 
protocol (Urist et al. 1975) may lead to some loss of inductive 
potential compared to demineralization and lyophiliazation only, as 
used in the present work (Delloye et al. 1985, Marinak et al. 1989). 
 Whereas non-sterile demineralized bone may be used in 
small laboratory animals without inconvenience (Schwarz et al. 
1988), the clinical success of this implant depends on its sterility 
(Harakas 1984). Sterility may be difficult to maintain during har-
vesting of cadaver bone and the subsequent processing of the bone 
and demineralization in HCl does not seem to assure sterility 
(Dahners and Hoyle 1989). Thus, ethylene oxide sterilization has 
been used in many studies by different investigators, both experi-
mentally (Bang 1973, Nilsen 1977, Syftestad and Urist 1982, 
Schmitz and Hollinger 1988, Pinholt et al. 1990) and clinically 
(Urist 1968, Ousterhout 1985), apparently without deleterious 
effects on the osteoinduction. Thus, in the first part of the present 
study, the DBM was sterilized in ethylene oxide gas (Alcon 
Universal Ltd., Fort Worth, Texas, USA) for 3 hours (Bang 1973). 
The normal histologic sequence of induction was observed in 
ethylene oxide-sterilized DBM with or without polyorthoester car-
rier. However, as recent studies has indicated that such sterilization 
may reduce the osteoinductive potency of the implant (Munting et 
al. 1988, Aspenberg et al. 1990), no sterilization of the DBM was 
used in the latter part of the work. 
 DBM was used either as chips (0.5 x 2.0 x 2.0 mm; weight 
0.7 mg) or as a coarse powder (0.1-2.0 mm2). The size was 
assessed by area measurements on photomicrographs of random 
samples. The osteoinductive potential may increase with decreasing 
particle size (Syftestad and Urist 1979, Glowacki et al. 1981a, 
Sampath and Reddi 1984). Pulverization to particle size less than 
approximately 0.1 mm may, however, cause reduction of the osteo-
inductive potential, probably by denaturation of contained induc-
tive proteins (Syftestad and Urist 1979, Sampath and Reddi 1984). 
 The demineralized bone was kept at 4°C and implanted 
within 48 hours. When stored at this temperature, DBM has been 
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shown to retains its osteoinductivity for a period of up to six 
months (Hosny et al. 1987). 
 The total mass of the implanted DBM ranged from 2.8 mg to 
15 mg. Whereas Muthukumaran et al. (1988) found a threshold for 
bone induction at 10 mg DBM, in the present work, typical 
histologic signs of induction was found in all experiments 
regardless of the mass of the DBM; and in paper I, we found no 
qualitative differences of the bone induced by 5, 10 or 15 mg 
DBM. In the same paper, both the osteoquantum index and the area 
of the induced bone increased proportionally to the quantity of 
implanted DBM. These findings agree with those of earlier studies 
in which the area of induced bone on radiographs was directly 
proportional to the weight of implanted osteoinductor, bone 
morphogenetic protein (Kawai and Urist 1988, Mahy and Urist 
1988). 
 In our studies of heterotopic osteogenesis by polyorthoester 
and DBM, spherical composite implants were made by mixing 
approximately equal volumes of DBM as chips or powder and 
polyorthoester manually at room temperature under sterile condi-
tions immediately before implantation. The DBM particles were 
partly exposed and partly embedded in the polyorthoester. 

Heterotopic model 
DBM-induced heterotopic osteogenesis in rat abdominal muscle 
was used as the experimental model for evaluating biocompatibility 
and effect on osteoinduction by polyorthoester (paper II), local 
hemostatics (paper III) and polyorthoester indomethacin delivery 
system (paper VI). This model has several advantages. First, DBM 
regularly induces heterotopic bone in rodents and the process has 
been well described (Urist 1965, Reddi and Huggins 1972). Sec-
ondly, composites of biomaterials and osteoinductor should first be 
evaluated by their ability to induce heterotopic bone, as new bone 
formation in orthotopic sites may be due to osteoblastic activity by 
the bone proper, i.e., osteoconduction, making quantification of the 
osteoinductive potential of the composite difficult. Finally, to 
evaluate the effect of the biomaterial on osteoinduction, the 
composite of biomaterial and osteoinductor should be compared 
with the osteoinductor alone. This is, however, difficult to 
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accomplish when purified, soluble osteoinductors are used as the 
osteoinductor is rapidly absorbed before bone is induced (Urist et 
al. 1984). 
 Heterotopic osteoinduction has been evaluated by both (1) 
qualitative methods: light microscopy (Urist 1965, Reddi and 
Huggins 1972), radiography (Urist 1965) and electron microscopy 
(Nilsen 1977) and (2) quantitative methods: ash weight (Urist et al. 
1970), calcium content (Urist et al. 1970), alkaline phosphatase 
activity of implant (Firschein and Urist 1972), 85Sr uptake analyses 
(Elves 1974), 45Ca uptake analyses (Reddi 1975), histomorphome-
try (Hosny and Sharawy 1985, Marinak et al. 1989) and computer-
ized image analyses of the area of induced bone on radiographs 
(Kawai and Urist 1988). 
 In the present work, qualitative histologic examination 
(papers II, III and VI), computer-assisted histometry (paper I) and 
85Sr uptake (papers I, II, III and VI) were used to evaluate osteoin-
duction. In paper II, qualitative histologic examination was per-
formed at 1, 2, 3, 4, 6 and 8 weeks to examine the effect of the 
carrier on different stages of osteoinduction. It was shown (paper 
II), in concordance with previous studies (Reddi and Huggins 
1972), that mature ossicles were formed by 4 weeks. Thus, 4 weeks 
postoperatively was chosen as an appropriate point of time for his-
tologic evaluation in paper III. In paper VI, qualitative histologic 
examination was performed at 2, 3, and 4 weeks to examine the 
effect of the indomethacin delivery system on both cartilage and 
bone formation. 
 85Sr uptake at 4 weeks postoperatively was chosen for quanti-
tative evaluation of osteoinduction in papers II, III and VI. 85Sr has 
been used for evaluation of bone grafts both as (1) 85Sr uptake in 
grafts, calculated as the osteogenic index [(counts/min/mg 
implant)/(counts/min/mg os ilium)] (Elves 1974, Elves 1975, 
Delloye et al. 1985, Munting et al. 1988) or the total content 
(cpm/implant) (Yoshikawa et al. 1988) and (2) loss of 85Sr from 
prelabeled grafts (Rønningen et al. 1985, Solheim et al. 1986). 
 In paper I, the 85Sr uptake expressed as the novel osteoquan-
tum index [(counts/min implant)/(counts/min/mg os ilium)] showed 
a linear relationship to the histometric area of the induced bone 
with a correlation coefficient (r) of 0.90, whereas only weak linear 
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relationships were found between the osteogenic index and the 
histometric area of the bone (r=0.32) and between the osteogenic 
index and the osteoquantum index (r=0.33). Thus, the os-
teoquantum index was used in papers II, III and VI; in paper II in 
addition to the osteogenic index. As the weight of the implant is 
disregarded in the osteoquantum index, this index, in contrast to the 
osteogenic index, permits evaluation of the effect of biomaterials 
on osteoinduction in composites without influence of density and 
biodegradation of the biomaterial as long as the same amount of 
osteoinductor is used. 

Orthotopic models 
Both cranial defects and radial defects in rodents are commonly 
used models for evaluation of autogenous bone substitutes. The po-
tential for regeneration of cranial defects is low, especially in 
adults. Defects that do not heal during the animals' lifetime are 
termed critical size defects and it has been proposed that evaluation 
of cranio-maxillofacial bone repair materials should be initiated in 
critical size defects of the rat calvaria (Schmitz and Hollinger 
1986). Nor do large radial diaphyseal defects in rats heal spontane-
ously (Gepstein et al. 1987, Alper et al. 1989). The absence of 
supination and the radio-ulnar synostosis contribute to the stability 
of the bones and to the retention of the implanted material (Alper et 
al. 1989). 
 When DBM is used for promoting healing of bone defects, 
the mode of action of the implant is more difficult to establish than 
in the heterotopic model as osteoclasts and osteoblasts are already 
present and might be stimulated by the surgical trauma. 
 Regeneration of bone defects by DBM is a multistep process. 
In paper IV, we wanted to evaluate the effect of the polyorthoester 
on the different phases of the healing of calvarial defects. Thus, a 
positive treatment response was defined as osteoinduction, i.e., 
bone formation within the defect and not in contact with the bone 
edges at weeks 2 and 3 histologically and bone bridging of the 
defects at week 4 histologically and radiographically. The 
treatment response of each rat was recorded as 0 (no induction or 
bone bridging), 1 (induction or bone bridging in one defect) or 2 
(induction or bone bridging in both defects). 
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 This is, of course, a rather crude semi-quantitative evaluation. 
For statistical analyses, the results of the radiographic analyses 
should preferably be continuous data of high accuracy. For this 
purpose, measurements of the area of new bone formation on radio-
graphs by digitizer and area analyses software have been used in 
heterotopic models (Kawai and Urist 1988, Mahy and Urist 1988). 
Further, we were primarily interested in the effect of the polyor-
thoester on the final result of the process. Thus, in paper V, we 
measured the area of bone formed within the original defect on 
radiographs by Sigma-Scan Measurement System including an 
electromagnetic digitizing tablet and a personal computer with 
Sigma scan software at 50 days postoperatively. In both papers IV 
and V the host-tissue response and osteoinduction were evaluated 
by qualitative histologic examination. 
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RESULTS 

Handling properties and local hemostasis 
Both in the heterotopic model (paper II) and in the two orthotopic 
models (papers IV and V) the DBM was rapidly mixed with blood 
forming a grainy mass that tended to be displaced. In contrast, the 
composite of DBM and polyorthoester was easy to place in the 
muscle pouch or bone defect and the tendency for displacement 
was much less. The polyorthoester and the composite had a plastic 
consistency and could easily be molded peroperatively according to 
needs. The bioerodible polyorthoester adhered to bone surfaces and 
provided local hemostasis, probably by plugging of spongy bone 
and secondarily promoting concentration of platelets and coagula-
tion factors (Sudmann et al. 1990, Solheim et al. 1991). The evalu-
ation of both handling properties and local hemostatic effect was 
purely qualitative. 

Heterotopic osteoinduction 
A requirement for an osteoinductor delivery system is that the 
carrier does not inhibit osteoinduction. In composites of carrier and 
osteoinductor, the osteoinduction may be inhibited by the carrier by 
two mechanisms. First, unabsorbed carrier will physically inhibit 
bone growth and bony bridging of a defect. According to Urist et 
al. (1987) the ideal delivery system should be resorbed and 
replaced by preosseous tissues within two weeks, cartilage within 
three weeks and bone within four to six weeks. Some existing de-
livery systems do not fulfill these requirements as they are resorbed 
more slowly than it takes for the DBM-induced regeneration of the 
defect to take place, thus, inhibiting or delaying the bone formation 
(Urist et al. 1987, Schmitz and Hollinger 1988, Lovell et al. 1989). 
Secondly, osteoinduction may be inhibited by a bioincompatible 
carrier that interferes physiologically with some part of the mult-
istep cascade of bone induction, e.g., by inducing a chronic inflam-
mation (Sela et al. 1986, Alper et al. 1989). 
 By qualitative microscopy, no difference in bone induction 
could be identified between the composite of polyorthoester and 
DBM (papers II, III and IV). At week one, osteoprogenitor cells 
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encapsulated the DBM and some chondrocytes were seen. At week 
two, cartilage and incipient bone formation were present. At week 
three, more bone was seen and by week four, ossicles with bone 
marrow had formed. Around the implants of polyorthoester and 
composite an inflammation with some giant cells was present until 
week two. The polyorthoester was seen until week 3-4 but there-
after only traces could be identified in some sections. The 
composite of DBM and polyorthoester showed highly significant 
(p<0.0001) increased 85Sr uptake compared with that of bioerodible 
polyorthoester alone (paper II), whereas no significant difference in 
85Sr uptake was found between the composite and the DBM (papers 
II and III). Thus, it seems unlikely that bioerodible polyorthoester 
inhibited bone formation by either of the two above-mentioned 
mechanisms. 
 In contrast to the polyorthoester, two local hemostatics in 
clinical use; ordinary nonabsorbable bone wax of 88% beeswax 
and fibrin-collagen paste were incompletely absorbed, induced a 
chronic inflammation and inhibited osteoinduction (paper III). The 
bone wax caused an inflammation with numerous multinuclear 
giant cells while fibrin-collagen paste caused an inflammation with 
accumulation of macrophages and proliferation of fibroblasts. Con-
nective tissue and inflammatory cells were seen uniformly 
distributed through all parts of the composite implants of DBM and 
bone wax or fibrin-collagen paste, interspersed between the partly 
resorbed DBM and the local hemostatic. Thus, the lack of osteo-
induction cannot be explained solely as an effect of a physical 
barrier of the local hemostatic. It seems likely that the chronic 
inflammation induced may be the cause of the inhibition of osteo-
induction. Clinically, the result of the study (paper III) suggest that 
bone wax and fibrin-collagen paste should be used sparingly, 
whereas polyorthoester with or without gentamicin seems promis-
ing as a local hemostatic for use in bone surgery. 
 Polyorthoester with 5% indomethacin also significantly 
inhibited DBM-induced heterotopic osteogenesis (paper VI). 
However, as opposed to bone wax and fibrin-collagen paste, the 
drug delivery system was absorbed and induced no persistent 
inflammation. Further, no indomethacin was detectable in blood 
samples. The results indicate that the inhibition was caused by a 
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specific local drug effect, e.g., inhibition of local prostaglandin 
synthesis. 

Orthotopic osteogenesis 
The critical size defect of the calvaria varies according to species 
and age. It has been shown that 2 mm parietal defects in 500 g 
Wistar rats (Freeman and Turnbull 1973), 4 mm parietal defects in 
28 day old CD strain, Charles River Breeding Laboratories 
(Mulliken and Glowacki 1980) and 8 mm parietal defects in 6 
months old Sprague-Dawley rats (Tagaki and Urist 1982) do not 
heal in 12 weeks, 6 months and 12 weeks respectively. We used 4 
mm parietal defects in 8 weeks old Wistar male rats and no defect 
without implant healed during the observation period, while all 
defects filled with the composite or DBM were completely bridged 
by bone histologically and radiographically by 4 weeks postopera-
tively (paper IV). 
 In the defects filled with the composite or polyorthoester, the 
polyorthoester was present and slight inflammation with monocytes 
and some giant cells was seen at week two (paper IV). The 
inflammation subsided by week three and only traces of the 
polyorthoester could be detected at week four. In the defects filled 
with DBM or without implant, the inflammation was milder and no 
giant cells were detected at week two. 
 In the radial defects, no significant difference was found 
between the area of new bone by DBM alone and the composite of 
DBM and polyorthoester radiographically (paper V). The area of 
new bone was significantly less in the defects with no implant or 
filled with polyorthoester only. Only a few of the defects filled with 
DBM or the composite were fully bridged by new bone. Typically, 
union of the new bone with the proximal fragment of the radius had 
occurred, while a small defect remained distally. In the defects with 
no implant or filled with polyorthoester only some bone formation 
was typically seen at the bone edges. 
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Conclusions 

1. The novel osteoquantum index was found to have a linear rela-
tionship to the area of the induced bone with a correlation coeffi-
cient (r) of 0.90 and high statistical significance (p<0.0001). Only 
weak linear relationships were found between the osteogenic index 
and the area of the bone (r=0.32, p=0.03) and between the os-
teogenic index and the osteoquantum index (r=0.33, p=0.03) (paper 
I). The osteoquantum index and the area of the induced bone both 
increased with increasing mass of implanted DBM, whereas the 
osteogenic index did not change significantly (paper I). 
 
2. Bioerodible polyorthoester did not inhibit heterotopic osteoin-
duction, it caused only a slight inflammation that subsided within 3 
weeks postoperatively and it was mostly absorbed by week 4 
(papers II, III and VI). In contrast, nonabsorbable bone wax and 
fibrin-collagen paste both were incompletely absorbed, induced a 
chronic inflammation and inhibited osteoinduction (paper III). 
 
3. The composite of polyorthoester and DBM induced bony healing 
of large calvarial (paper IV) and radial defects (paper V) as DBM 
alone. Moreover, the composite was moldable and easily 
contoured, and technically easier to use than DBM alone. Finally, 
the polyorthoester provided local hemostasis when used either 
alone or in composites with demineralized bone (papers IV and V). 
 
4. Polyorthoester with 5% indomethacin significantly inhibited 
DBM-induced heterotopic osteogenesis, probably by local mecha-
nisms as indomethacin could not be detected in any blood sample 
(paper VI). 
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